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SENSITIVLITY OF SHORT-PERIOD TRACKING DATA
FROM A LUNAR SATELLITE TO THE
LUNAR GRAVITATIONAL FIELD HARMONICS

By William R. Wells
Langley Research Center

SUMMARY

A study has been made to determine the sensitivity of short-period tracking
data from a lunar satellite to the zonal harmonics up to degree four and to the
first two sectorial harmonics (which are even functions of the longitude) of
the lunar gravitational potential. The sensitivity of the tracking data is
indicated by the differences which result whenever the range and range-rate
values (relative to the center of the earth) are computed with and without var-
ious gravitational components present in the gravitational potential function.

A parametric study of the effect of inclination and nodal position on these
sensitivities is also presented.

INTRODUCTION

The use of artificlal satellites to determine the external gravitational
field of the moon is currently under investigation. The success of this tech-
nique will depend, to a great extent, upon the sensitivity of the tracking data,
that is, range and range-rate measurements of the orbiting lunar satellite to
the lunar gravitational field, and upon the ease with which this field can be
separated into its various components. Once this separation has been accom-
plished, the effect of each component on the range and range rate can be
accounted for individually by means of a harmonic analysis. An indication of
the sensitivity of the tracking data to each of these components is indicated
in the difference in the calculated values of range and range rate with and
without a particular harmonic present in the calculation.

The purpose of this paper is to present an analytical determination of the
sensitivity of the range and range rate of lunar satellites to various compo-
nents of the lunar gravitational field during several satellite orbital periods.
A comparison of these sensitivities to the tracking noise level should provide
a prellminary indication of the response of the tracking data measurements to
the lunar gravitational field.



SYMBOLS

a,e,i,w,n,M Keplerian elements
Aa,Ne AL A0,/ ,AM perturbations in Keplerian elements
by, . . .,bg coefficients defined by equation (B22)

C: = L/ﬁcosjv dv (3 =1,2, . . .)

J
Com>Snm coefficients of lunar-gravitational-potential harmonics
dy, - - .,d5 coefficients defined by equation (B23)
D mean distance between centers of earth and moon, 384,402 km
B eccentric anomaly, rad
f1, . . .,f, coefficients defined by equation (B18)
F row vector formed by partial derivatives of range with respect

to Keplerian elements

coefficients defined by equation (B15)

gl) L 7g7
G row vector formed by partial derivatives of range rate with
respect to Keplerian elements
E? angular-momentum vector of satellite, kmg/sec
hy, . . .,h5 coefficients defined by equation (B21)
T19s1715I0051)g integrals defined by equations (B7e), (Bloc), (Blke),
and (B20c), respectively
19,my ,kq direction cosines of the position vector relative to
x',y',z'-axis system
- -
lo,ms, ks direction cosines of the vector h X r relative to
x',y',z'-axis system
15’m3’k5 direction cosines of the angular-momentum vector relative to
the x',y',z"'-axis system
n mean motion of lunar satellite, rad/sec



n, mean motion of moon about earth, 0.27 X 10-2 rad/sec

Pom associated Legendre function

r distance from center of moon to satellite, km

r position vector from center of moon to satellite, km

R disturbing function due to a nonspherical nonhomogeneous moon,
kme/sec2

Ry mean radius of moon, 1738.1 km

Rym nmth component of R as defined by equation (B3)

t time, sec

U lunar gravitational potential function, km2/sec2

v true anomaly, rad

X,¥,2 Cartesian coordinates with respect to an inertial coordinate
system

x',y',z!' Cartesian coordinates with respect to a moon-fixed coordinate
system

x',y',z' coordinates of center of mass of moon with respect to

x',y',z'-axis system
N, column vector formed by perturbation in Keplerian elements

B angle between line joining earth and moon centers and line
joining moon and satellite centers, rad

Y vernal equinox

0 longitude of satellite measured in equatorial plane of moon from
mean earth-moon line, positive eastward, deg

B product of gravitational constant and mass of moon,
4902.8 km3/sec?

p range of satellite measured from center of earth, km

E

perturbation in range, km

NP variation in range due to variation in coefficient of gravita-
tional harmonic, km



) range rate of satellite measured relative to center of earth,

km/sec
XS} perturbation in range rate, km/sec
A0 variation in range rate due to variation in coefficient of

gravitational harmonic, km/sec

¢ latitude of satellite measured from lunar equator, positive
northward, rad

Qr longitude of ascending node measured from mean earth-moon line,
positive eastward, rad

Subscripts:
m,n mth order and nth degree of harmonic
o nominal value

A dot over a symbol denotes differentiation with respect to time.
GENERAL CONSIDERATIONS

Analytical Formulation of Problem

A lunar satellite will experience small perturbations in its orbital ele-
ments due to the influence of the higher order harmonics of the lunar gravita-
tional potential function. These disturbances will also cause variations in the
tracking data measurements since the range and range-rate measurements can be
related to the osculating or time-varying elements of the satellite orbit. The
difference in range and range rate computed with and without a particular grav-
itational harmonic will be defined as the sensitivity of the tracking data from
a lunar satellite to that harmonic.

For this analysis the expressions for the range and range rate of the lunar
satellite, in terms of the osculating elements, will be given relative to the
center of the earth. 1In addition, it will be assumed that the lunar equatorial
plane and the earth-moon plane are coincident and that the moon is assumed to
revolve about the earth in a circular orbit. It can be shown that the assump-
tion of coincidence of lunar equatorial and earth-moon planes is well justified
with respect to range and range-rate measurements if the ratio a/D is much
less than unity, that is, for the case of close lunar satellites.

The range of the satellite is given by (see fig. 1):

1/2
o(a,e,i,w,n,M) = (D2 + 2 - 2rDZl) (1)



where
1y = cos B = cos(w + v)cos Q' - cos 1 sin Q' sin{w + v)

An expression for the range rate of the satellite can be cobtained from a
direct differentiation, with respect to time, of the range as given by equa-
tion (1), that is,

(r - DIy ) - Driy

p(a,e,i,w,0,M) = (2)
(D2 + 12 - 2rDZl)l/2
The perturbation in range and range rate due to a disturbance can be
obtained analytically by expanding equations (1) and (2) about their undis-
turbed values in a Taylor's series
p=po+ée Aa+a—p Ae+-a-e Ai+a—p XD
da |, de o ai |, o
+5_p m+§9‘ AM+O[(Aa)2:| (3a)
|, M |5
é:bo+a—p Aa+a—p Ae+a—p Ai+§£ )
Bao aeo aio w |,
of of
+ 2P| 0+ R AM+OEAa)2] (3b)
N, M |,

It will be assumed in this analysis that, over a few orbital periods, the
perturbations in the elements are sufficiently small so that the second-order
terms, OI}Aa)%], in equations (3) can be dropped. Thus, the expressions for

the changes in range and range rate can be formulated in the following linear
forms:

B
g

=p - pO [o) ()-I-a)

AD=p-p =Gy La (4p)
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where the vectors F, G, and Aa are defined as

2 2 2

F = é@., ?—e _8_9_, _a_p_ _aﬂ .a_p. (5a)
da Oe Oi odw o0 oM

3 3 3 O b ab)
g=(2L 22 C°o 2P ZF P
(aa’ v’ 31 w (%)

(5¢)

EBEERE

The elements of the vectors ¥ and G can be obtained analytically
through use of equations (1) and (2). If € represents any of the elements,
a, e, i, w, Q, or M, then

dp _ 1 or ol
=+ ==|{r -~ DI;\=— - D — 6
de P [(r l)ae i ae:l (6a)
3p  1/o(pp) . Op
- = Zf—= - p — 6b
de P[Be P de (6v)
where
2pp) _ .for _ ) . or Ay .+
S0 =1 SZ D —a-z-— + BE—(I‘ - Dll) - Dir g + 7']_ 'é‘g (60)
o1 . 31
Expressions for the partial derivatives, é{) ——E, éz, and —QE are glven
de”  Oe de de

in appendix A.

Equations (4) express the first-order perturbations in range and range
rate for any general disturbance. These expressions will be used, in this
analysis, to compute the perturbations in p and O due to the higher order
harmonics of the lunar gravitational field.
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The elements of Aa are obtained after a discussion of the lunar disturb-
ance function. Each component of the moon's gravitational field and its effect
on the range and range rate of a lunar satellite can be accounted for individu-
ally by an harmonic analysis. The lunar gravitational potential can be written
in a form similar to that recommended for the earth potential (see ref. 1) as

© n
n
R
U = % E: }: (Eg) (Cnm cos m8 + Sy sin me)an(sin @) (7
n=1 m=0

The associated Legendre function appearing in equation (7) is computed by
the equation

Pop(sin ¢) = cos™ m/2 ¢ }Z ( l) (2n - 2t) !sin™™0" E?Q )

on tM{n -m-2t)1(n - t)!

where

k = if n-m is even

and
k= — = if n~-m dis odd

The potential function is defined in equation (7) so that the motion of
the satellite relative to the moon is determined by the vector relation

-
r

= WU (9)

The first term of U causes elliptic motion of the satellite about the moon
which can be described by a constant set of Keplerian elements. The remaining
terms, which make up the function known as a disturbing function, cause higher
order perturbations to the elliptic motion which can be formulated in terms of
time-varying perturbations in the elements. These time-varying perturbations
are determined from a solution of Lagrange's planetary equations given in ref-
erences 2 and 3 as



de _ 1 - e2 3R V1 -e2 R (10b)

di cot i OR ese i oR (10¢)

aw _ _-coti 3R, V1-e23R (104)

at 2/7 - 2ot nale Oe

an esc 1 oR (10e)

& s
na2y 1 - e2 ol

aM _ _(1-e2)aR_ 2 3R
dat " naee Be na Ba (lOf)

- % ii ii (E%)H(Cnm cos m6 + Sppy sin mG)an(sin ¢) (11)

The function R can be expressed in terms of the angular orbital elements and
the true anomaly of the orbit, by use of the following relations determined

from figure 1

sin ¢ = sin i sin(w + v) (12a)
cos @ cos & = cos Q' cos(w + v) - cos i sin Q' sin(®w + v) (12b)
cos @ sin 6 = sin Q' cos(w + v) + cos i cos Q' sin(w + v) (12¢)




The perturbations in p and p due to an individual harmonic of R
(e.g., the harmonic with coefficient Cnm) from equation (4) are

Ap(Cnm) = F, Aa(cnm) (13a)
Ab(Cnm) = Go Aa(Cpy) (13b)

Values of An(Cnm) for various values of n and m are given in appendix B.
Variations of these perturbations due to variations in the coefficient Cpp
are given as

G

c
800 (Cam) = Fo acn;m 8Cpm (14a)

am< Cnm!

86 (Cpm) = CGo So 5Cpm (1)

Equations (1L4) follow directly from equations (13) since it has been assumed
that the perturbations in the elements are linear in the coefficients of the
gravitational harmonics.

The variations in Ap and Ap given by equations (14) have been previ-
ously defined as the sensitivity of the tracking data to the lunar gravita-
tional harmonics. The determination of their behavior with time is the purpose
of this analysis.

ANATLYSIS OF RANGE AND RANGE-RATE SENSITIVITIES

In the following analysis, a time history of the range and range-rate sen-
sitivities will be considered for variations in the coefficients Cyg, Ci1»

Cogs Coo, CBO’ and Clo. The magnitudes of these variations are taken to

correspond to the smallest values that cause variations in Ap and AP which
lie outside the assumed noise level at some time during the tracking phase.

The orbit used for this analysis has pericentron and apocentron altitudes of

46 and 1850 kilometers, respectively. The value of the argument of pericentron
is taken as 0° and is assumed to be constant for the short times considered in
the analysis. However, a parametric study is performed on the effects of
inclination and nodal positions on the sensitivity of the tracking data.

The time dependence of the range-rate and range sensitivities is given in

figures 2 and 3 for three consecutive orbits. The tracking noise level is
indicated in these figures as 15 meters in range and 0.002 meter per second in

9



range rate. These are values of the accuracy in range and range-rate measure-
ments currently believed feasible.

Illustrated in figures 2(a), 2(b), 3(a), and 3(b) is the periodic behavior
of the range-rate and range variations due to variations in the coefficients

Cip @and Cyq of 10-5. Since these two coefficients can be related to the
location of the center of mass of the moon relative to the origin of an assumed
coordinate system (i' = RyC11>» ¥t o= RyS115 Zv = RMClO)’ their variations rep-
resent an uncertainty in the location of the moon's center of mass. Values of
Cip and Cq7 of 10-2 correspond to an uncertainty of about 17 meters in the
location of the moon's center of mass along the x'- and z'-axes. The results
of figures 2(a) and 2(b) indicate that values of Cy; and Cyq Of the order

of 102 may be detectable in the range-rate data during the first three orbits
of tracking. Figure 3(a), however, indicates that the variation in range does
not exceed the assumed noise level for this variation in Cygp.

The sensitivity of tracking data measurements to variations in Cop is
given in figures 2(c) and 3(e¢). The variation in range rate is above the noise
level during the first orbit for a variation in Con of 10‘6. The range vari-

ation becomes greater than the nolse level during the second orbit for this
variation in Cpp. The secular effect (linear change with time) of the second

zonal harmonic is evident in the second and third orbits.

The sensitivity of the tracking data measurements to a variation in the

coefficient Cpo of 10”7 is given in figures 2(d) and 3(d). The variations in
both range and range rate are beyond the noise level in the second orbit and
continue to grow secularly with subsequent orbits. These results indicate that
the radar measurement should be highly sensitive to the effects of the second
sectorial harmonic of the lunar gravitational field.

The sensitivity of the tracking data measurements to a variation in CBO

of 10~2 is given in figures 2(e) and 3(e). These results indicate the range
and range-rate measurements should be fairly sensitive to the effects of the
third zonal harmonic during the first orbit of tracking. This sensitivity
increases with additional tracking time as evidenced by the long-periocd varia-
tions (variations with angular frequency ) in the range and range-rate values
in the second and third orbits.

The sensitivity of tracking data measurements to a variation in Cjg

of 106 is given in figures 2(f) and 3(f). The variation in and range rate,

due to this harmonic, exceed the noise level after one orbit of tracking; the
variation in range exceeds the noise level only after the second orbit. The

long~period and secular effects of the fourth zonal harmonic on these values

are evident in the second and third orbits.

The effect of varying nodal positions on the tracking data sensitivity
during one orbital period is shown in figures 4 and 5. The peak magnitudes of

10



the range and range-rate variations change little, with the exception of those
due to the second sectorial harmonic, with nodal positions during one orbit of
tracking. Figures 4(d) and 5(d) indicate the sensitivity of the tracking data
to the second sectorial harmonic to be highly dependent on the initial nodal
position of the satellite orbit.

In a determination of gravitational constants, the ability to change the
inclination of the satellite orbit plane may aid in the separation of highly
correlated coefficients. This separation could be accomplished by the use of
more than one satellite. The effect of varying the inclination on the tracking
data sensitivity is shown in figures 6 and 7 for one orbital period. With the
exception of the odd zonal harmonics represented by ClO and CBO’ the sensi-

tivities are slowly varying functions of the inclination.

The sensitivity of the tracking data to the odd zonal harmonics is approx-
imately proportional to sin i as indicated in figures 6(a), 6(e), T(a),
and T(e).

CONCLUDING REMARKS

A study of the sensitivity of short-pericd tracking data from a lunar
satellite to the harmonics of the lunar gravitational field with coefficients
Ci0» Ci11, Cpop, Cpp, C30, and Cho has been performed. It was shown that
the range and range-rate measurements, relative to the center of the earth, are
sufficiently sensitive to the first, third, and fourth zonal harmonics so that

variations in their coefficients of the order 10-D cause variations beyond the
noise level during one orbit of tracking. In the case of the second-order

zonal and sectorial harmonics, a variation of the order of 10‘6 will cause a
variation in range and range rate beyond the noise level. 1In all cases, the
sensitivities of the tracking data are greatly amplified after three full
orbits of tracking. This amplification resulted from the secular and long-
period effects of the harmonics.

It was shown that the effect of varying the nodal positions changed the
maximum sensitivity of range and range-rate measurements to the gravitational
harmonics only slightly, with the exception of the second sectorial harmonic.
The effect of varying the inclination was to cause the sensitivities to the
gravitational harmonics to vary slowly with the exception of the first- and
third-order zonal harmonics, which vary approximately as the sine of the
inclination.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., August 23, 1965.
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APPENDIX A

EVALUATION OF THE PARTTAL DERIVATIVES OCCURRING IN ¥ AND G

ol : ol
The partial derivatives é{} ——L, é{) and —1 needed for the evalua-
de” Oe de de

tion of the vectors F and G defined by equations (5a) and (5b) can be
obtained analytically from the expression for two-body elliptical motion
written in terms of the osculating elements. The two-body results needed are
taken from reference 2. They are

r = a(l - e cos E) (Ala)
cos V = __C__OSE—_e (Alb)

l - e cos B

V1 - e2si
sinv =Y 1 -€°sin E (Ale)

l -e cos E

M=E-e sin E (A1d)

= o -
The following direction cosines of the vectors Fi h Xr, and h rela-
tive to the x',y',z'-axis system are given for convenience since they will

occur frequently in the analysis:

1, = cos(w + v)cos Q' - cos 1 sin Q' sin(w + v) (A2a)

m = cos(w + v)sin Q' + cos 1 cos Q' sin(w + v) (A2p)

ky = sin i sin(w + v) (A2c)

lp = -cos Q' sin(w + v) - cos 1 sin Q' cos(w + v) (A3a)
m, = cos Q' cos 1 cos{w + v) - sin Q' sin (w + v) (A3Db)
k, = sin i cos(®w + v) (A3c)
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APPENDIX A

13 = sin i sin Q' (Aka)
mg = -cos Q' sin i (Abp)
]:;3 = cos i (Ake)
d1
Evaluation of éf— and 1
€ de
From equation (Al)
%E == (A5a)
2~ - 2cos E - ) = (a)
g_—r os E - e) = -a cos v b
g; = % = 2_; =0 (ASC)
i
2
2—1" = §r— e sin E (A54)
M

From equations (Al) and (A2)

d1y

—_—= =0 A6

™ (A6a)
o1y ov
Lt =1 Yv A6b
de 2 Je ( )

where

X _ 2 -
dv _ a sin E E+a(l e):|=51nv(2+ecosv)

ce ry1l - &2 * 1 - e

13



5 k) sin Q' (A6c)
o1
—Li = 7,2 (A6d)
aw
ol 0l
o W ()
ol ov
—_— =1, X A6T)
M 2 M (

where

M r
d1
Evaluation of éﬁ and —1
de €
From equations (Al) and (A2)
r = e—rHE sin B (ATa)
iy = -nym + 12{/ (ATD)
where
= 1 - e2
v-;E ua(l e )
Then
oF _ | -e—‘/*-*- sin E (A8a)
da 2ry a

1k




APPENDIX A

of _Via( i 54 e cosE OB - € 8inE or (ASb)
e r de T de
where
§E.=isinE
e r
éi:é—é:ﬁ:ét:() (ASC)
di o !
éi = &vipa cos E QE - L sin E §£ (ABd)
M T M T M
where
OE _a
) r
31y v
== 1.2 A8
da 2 da (A8e)
where
o _ _ 3 feln - e?)
da ore a
dlq 5% olp omy
= 2 7 - 8f
Se 2% Vs T (451)
where

a_c; l_e2 rB ae
Ol _ ;. ¥
de L de
Om
1L _p OV
de "2 de

15



APPENDIX A

ail =n.k, cos Q' + v in Q'
SZ_ 1%1 k2 sin

where

16
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APPENDIX B

EVALUATION OF A

The elements of the vector s can be obtained once a solution for A
nm

from the Lagrange planetary equations is accomplished. One form of the solu-

tion to these equations is given in reference 4. For the limited number of

harmonics treated in this analysis (i.e., the harmonics with coefficients Cqp,

C11, Coo, Cop, C3p, and Cho) it was found to be convenient, as well as

instructive, to develop expressions for the components of Aa as follows. The
integrated form of Lagrange's equations for an individual component of the lunar
potential will be written as:

Aa = | —— Rynm (Bla)

t
_ a2 ‘/ _ a2
Ae = l___E_.an V1 -e® (B1b)

- Roo
n2a2e nae t
o)
t
cot i cse 1
A o= o o (Ble)
nagv 1 - e? na2V 1 - e2 to
t
cot i Rs ,/ _ a2
Mo o= |- L 1-e"g (B1a)

N0 = ;EE_SEE_E_{] (Ble)
nagv 1 - e2 to
t
M = [} Eﬁ - Ll_:_EE).Ré} (B1fF)
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APPENDIX B
where
SR
R, = f azm dt (B2a)
oR
Re = f azm dt (B2b)
oR
Ry = f a;lm dt (B2c)
oR
R = | o (B2a)
oR
o = f sa O (B2e)
and
R n+1
Ryp = ﬁ“—(?l"i) Cpm cos mo P, (sin ¢) (B3)
M

Note that R, 1is the n,mth component of the even part of the disturbance

function.

The use of equations (Bl) and (B2) will be illustrated for the case of the
perturbations caused by Rig.

Perturbations Due to RlO

The disturbance function RlO is given by equation (BB) as

R 2
Rip = :TM cm@.) sin i sin(® + v) (B1)

18




APPENDIX B

The partial derivatives to be substituted into equation (B2) are computed
as follows:

oR R 2
Bio = - 2:5M ClO(%) sin i sin(w + v) (B5a)
OR 2
10 _ 2 or " o .
£ 2o nefef Yot et 0

R 2 {
_ HEM ClO(%) aip i[%(%)cos v sin(w + v) + (2 + e cos v)sin v cos(w + v{]

a® 1 - e?

(B5b)

oR R 2

10 KM a .

S " ClO(;) cos i sin(w + v) (B5c)
éﬁig = &E& CinlZ 2 sin i cos(w + v) (B5a)

o g2 10(1“)

ORjy SRy

2 = _=2 =90 BSe
on on'! (55)

These results can now be integrated with respect to time to obtain the
proper values of Ry, Rg, Rj, Ry, and R, as expressed by equation (B2).

Since v 1s the independent variable in these partial derivatives, it is
advantageous to integrate with respect to v rather than +t. This integration
can be accomplished by using the two-body result

av _ nJl_.e_e(z)z (36)
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APPENDIX B

Then

2 aRlO dv = 2nRyCi g

vV =
2 n\/l—eef V1-e2

R sin i cos(w + v) (BTa)

OR
10 34

e nh—_géf )2

C
m sin 1 l:(l + 2 cos v)cosav cos w
(1 j e2)5/2 3

I

Lip -

+ (2v +eCy - 2C, - eCB)sintf] (BTp)

where

2naBRyC
Ilo=-—jl—o-s~sini Ch + eCxz)sin w - -l-+-e-cosvcos2v cos W
2 3 ) 3

(o - 2P
(BTe)
naRyCi
R; = = ———=— cos i cos(w + v) (B74)
i
V1-e2
naRyC
Ry = M0 gin g sin(w + v) (BTe)
1 - e2
Ry = 0 (BTE)
The values of Cj (§ =1, 2, .) appearing in equations (BTb) and (B7c)
are defined as
Cj = f cosdv av (3 =21,2, ...) (B8a)
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APPENDIX B

These expressions can be computed, once Cq and C, are determined, by the
recursive relation

C: =xtan v cosdv + J -1
dJ J 3

Cj-n (3=3, 4% ...  (88v)

Substitution of the results of equations (B7) into equations (Bl) provide
the desired expressions for the elements of Aa.

Perturbations Due to Rll

The disturbance function Rll is

LRy C 2
Ryp = lezll %) [}os Q' cos(w + v) - cos i sin Q' sin(w + vi] (B9)

Proceeding as before, the following results are obtained:

EHRMC 11

R, = — — =~ =—
: V 1 - e2

[Eos Q' sin(w + v) + cos i sin Q' cos(w + vﬂ (B1Oa)

anRyC
Re =177 - —————EQQLL——lz (cos Q' sin w + cos i sin Q')(l + % cos v)cosev
(l - e2)5/2
+ (cos Q' cos w - cos i sin Q' sin w)(2v + eCy - 2Cp - ec3i] (BLOb)
where
2naRyC
I = —————ELEQL—-(COS Q' cos W - cos 1 sin Q' sin ®)(Cs + eC
11 5/2 2 3
(- ?)

+ (cos Q' sin w + cos i sin Q' cos w)(%.+ %-cos v)cos ] (B10e)
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APPENDIX B

n C
R; = - -Eﬁﬂ-li— sin i sin Q' cos{(w + v) (BLOQ)

vV1- e?

naRyC
R, = BuCi1 l} cos Q' cos(w + v) + cos i sin Q' sin(w +‘Vﬂ (B1oe)

) V 1 - e2

naRMCll

Rp = - —————
V 1~ e?

[Ein Q' sin(w + v) - cos 1 sin Q' cos(w +-vﬂ (BLOT)

Perturbations Due to Rpp
The perturbations due to Ryy are taken from existing expressions as
given in reference 3. The only difference is that the present analysis includes

the secular term in the disturbing function which is not included 1n the analy-
sis of reference 3. The disturbing function for the present analysis is

2
C
Rog = - LLR—EB—QQ(%)BE - 3 sin®i + 3 sin®i cos 2(w + v):l (B11)

while that used in reference 3 is

or

1CooRy®
haB(l - e2)3/2

Rog + (2 - 5 sin®1)

For this case, the expressions given in equations (B2) are not considered
since the perturbations can be written directly from reference 5. The pertur-
bations in the elements due to the second zonal harmonic are
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2 -3/2
2a 3 2 r

v
+ (%)5 sin®i cos 2(w + v) (B12a)

Vo

For purposes of illustration is computed from equation (BlQa) as

C20

1
=
=
|
i_l
t
|
n
e
s
no
l—l-
~———
—1
|

SRR

ACs0 2a 3
v
a\’ . o,
+ (5) sin2i cos 2(w + v) (B12b)
Vo
2 2
ConRy- (1 - -3 /2
re = - 2%20% (-<?) l(l -2 sinEi) (3)5 - (1 - €®) 5/:]
2ae > 2 r
v
1/a > . D,
+ —(—) sin“i cos 2(w + v)
o\r
Vo
2 . 2. v
Ry C
+ 2T Coosin lEos 2(w + v) + e cos(v + 2w) + L e cos(3v + 2(.0)]
4a2e(1 - e2) 5 Vo
(B12c)

3CooRy-sin 21
8a2(l - e2)2

v
AL = Eos 2(w + v) + e cos(aw + v) + % cos(aw + BVEI
v

(o]
(B12d)
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ND = - BCQOM — { -2s1n21 (v+es:an)
N
lLaEl—e

1
+l——s:.n l-— sin v + = sin 2v + & sin 3v
( 2 b ) 2 12 5]

rT.rlr!

101 e o (115 o2\ 2l
_EE—Slnl+(§ IgSJ.n 1)e]Sln(V+2w)

+ £ sin®i sin(v - 20) - -]-‘-(l -2 sin2i) sin 2(w + v)
16 2 2

+ L1 sin2s - l(l ) sin21>e2 sin(3v + 2w)
ef12 6 8

v
g— sin®i sin(l4v + 2w) + % sin®i sin(5v + 2w) (B12e)
1
Vo
5020RM2cos i 1
= v + e sin v - = sin 2(®w + v)
2 2 2 2
2a (l - e )
v
- -Z- sin(v + 2w) - g_ sin(3v + ecn):l (Bl2f)
Vo
2 K 2
9ChnRy 3ConE;
- 20M /2(-51- -1 sin2i>t - 20 M 7 4 (1 -2 sin2i) x
2a2(l )3 to 2a2e(l e2)5

Kl - %?)sin v + -Z— sin 2v + i—; sin Ble + su&gj_E(l + ?;.- e2>sin(v + 2w)

2
- & sin(v - w) - 7 (l - %)sin(Bv + aw) - % e sin(kv + 2w)

- 9— sin(5v + Bu)):l} (Bl2g)
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Perturbations Due to R22

The disturbance function R22 is

2
C 2
Rop = _éﬂEﬁ__@g__(%) [%l - g + 2g5(l + cos v)sin v cos v
2a3(l - 62)
+ e(gl - gz)cos v + 2g, coslv + 2eg,, cos3%] (B13)

The remaining expressions to be substituted into equations (BL) are

9RM2n022 2 3 2
Rg = - 5/2E38g5 COSTY - &5 COSTV ¥ (& - &)V
2a(l - e2)
+ e(gl - gg)Cl + 2g.C, + 2eg20é] (BLha)

2
SnRy~Cop [. 3 1(.2 3
R, =1 - - gz cos v|2 + 2 e cos v + =(e“ - L4)cos2v - 2 e cos?
€ 22 (l _ 62)5;2 5 o 5( ) ) v

__2_2l++2|:ec+c+2—20—c-2C] Bllb
5 e“cos {] g512C1 + 3eCy, (e ) 3 — 3eCy - eCq ( )

where

= a
Ipp = k/ﬁ 5(r)R22 cos v dt

2
NnRy“C
e { (5 5 e cos v v 3 eosiaosdy
2(1 - e2)

n

+ (gl - gg)C:L + 2e(gl - g2)02 + [%e(gl - gg) + 2g, 05

+ hegacu + EeEgQC%} (Blke)
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R; = [sin 2i cos 20' - g,\v
” 2(1 - e2)5/2 ( )

+ e(sin 21 cos 2Q' - gu)Cl + 2gaC2 + EeghCB - g5 cos2v - % eg5 cos3£]

(B1kq)

2
C
Ry = - M‘E g2<l + % e cos v)cosev + gB(v + eCy - 202 - 2eCBH

2
(3 - )
(Blke)
3nRy-Cop 2
R = - —m——————1|- 8¢ (l + = e cos v)cosgv
\3/2f T 3
(l - e )
Y- P ' _
+ (sm i sin 20 g6)(v + eCl) + 2g6(02 + eCB)] (B1L4r)
In expressions (B1l3) to (Bl4f) the following definitions were employed:

g = sin2i cos 20' (B15a)
gy = cos an cos 2Q'(l + cosgi) - 2 sin 2w sin 20" cos 1 (B15b)
gz = -sin 20 cos 29'(1 + cosei) - 2 cos 2w sin 20" cos 1 (B15¢)

gy = 2 sin i sin 20' sin 2w - sin 2i cos 20' cos 2w (B15d)
g5 = sin 21 cos 20" sin 2w + 2 sin 1 sin 20' cos 2w (B15e)
g = (l + cosgi)sin 20" cos 20 + 2 cos i cos 20" sin 2w (B15F)
g7 = 2 cos i cos 20' cos 2 - (l + cosgi)sin 20 sin 2w (BL5g)
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Perturbations Due to R50

The disturbance function RBO is

L
Rz = EBMEEEQ(%) [%(5 sin2i - M)Sin(w +v) - 5 sin®i sin 3(w + vi]sin i

8akt
(B16)
The remaining expressions to be substituted into equations (Bl) are
nRy~ C sin i
Ra = - M3 20 IEegsinei cos 3w cosdv + 10e sin®i cos A cosuv
2a2(l - e2)5/2
+ L(QO sin2i cos W - e2f2)0055v - ef2 cossv - f2 cos Vv
3
+ 3£)Cq + 6ef Cy + (5fle2 - 20 sin®i sin 3&)03
- 40eC), sin®i sin 3w - 20e205 sin®i sin 3@] (B17a)
nRyC30 sin i 5 6
Re = 20eJsin®i cos 3w coslv + 80e2sin®i cos 3w cosPv
2
8a(l - e2)7/

+ [;OBe sin®i cos 3w - % ej(hfg + BfBi]cos5v + [%O sin®i cos 3w

- Bez(f2 + f5i]cosuv - e(hf2 + 5f3)c053v - (2f2 + Bfa)cosgv - 6flv

15ef Cy + 602(fu + 2f; - 2e2fl) + 3e[§fu + 1,12 - e2§]c5

-

2[— 100 sin®i sin % + 6e2(f1L + 3fl):| Cy + 3e l:eg(fl+ + hfl)

180 sin2i sin 5%]05 - 480e®sin®i sin 3wCqg - 140e5c7 sin®i sin 5{}

(B17Dp)
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2. .

nRMBC sin“i cos i

R; = - ERa cot i+ 30 24— {}egcos 3w cosPv + 10e cos 3w coskv
ha(l - e2)5/

+ ;{% cos 3w - e2(cos 3w + 3 cos wiICOSBV - 5e(cos 3w + 3 cos w)cosev
- 5(cos 3w + 3 cos w)cos v + 15(sin 3w + sin ®)Cy + 30e(sin 3w + sin @)Co

+ 5[§e2(sin W + sin ) - 4 sin 54}05 - LoeC), sin 3w - 20e2c5 sin 5&5}

(B17e)

L

v

m%PC sin i
Ry = 50 — [E 12e25in®i sin 3D cosdv - 30e sin2i sin A cos
8a(l ~ e2)5/2

+ (fle2 - 20 sin2i sin 5w>0055v + Bfle cosev + 5fl cos v + 5f5C1
2 - s 24
+ 6ef502 + 5(e f5 - 20 sini cos 5&)03

- 120eC), sin®i cos 3® - 60e205 sin®i cos 5%% (B174)

Ry =0 (BLTe)

In equations (B16) to (Bl7e) the following definitions were employed:

£ = (5 sin?L - 4)sin @ + 5 sin®l sin 30 (B18a)
£ = 3(5 sin®i - u)cos ® + 5 sin®i cos 3 (B18b)
f5 = (5 sin?t - k)cos @ + 15 sin?i cos 30 (B18c)
£y, = (5 sin?i - 4)sin @ + 25 sin®i sin 3® (B184)
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Perturbations Due to RMO

The disturbance function RMO is:

35PRML+CL+0

Rhn =
Lo 85

a 2 + h cosev + h cos”v + h c055v sin v + hg s8in v cos v
B T 3 Iy 5

(B19)

The remaining expressions to be substituted into equations (B1) are:

L75nBy Cho [ 1
8a3(l - e2)7/2 T

- % e(egh5 + 3hu)cos5v - i(hu + 3e2h5)cosuv - eh5 cosdv - % h5 cos2v

eth cos7v -+ e2hh cos6v
2

+ hyv + 3ehCy + (h2 + 5e2h1)02 + e(3h2 + e2hl)c3 + (h3 + 5e2hz>clL

+ e(3h3 + e2h2)05 + 3e2h5C6 + eBhBC%] (BEOa)

N
nRy C
Re = Lo - o1y Cho - J—‘-'b5el+cos9v - 2‘b3e3c058v -1 eg(eeb2 + 9b
2( 2)9/2 9 8 T

a (1 - e

e(5e2b2 + 7b5)cos6v + %—(el*'bl - 9e2b2 - 2b5)cos5v

5) COS7V

o

FIE OV

e(5e2bl + 7b2)cosuv - %(9e2bl + 2b2>c053v - g ebl coslv - 2bl cos v
+ Zb)Cq + feb,Cy + (9(321::1‘r + 2b5 - 2b4>C5 + e[?(b5 - bu) + SeEbé]Cu
+ E)h_el" + 9e2(b5 - b)+) - 2b5:lC5 + e[5e2(b5 - b’-l-) - 7b5]C6

+ e2 |:9b5 + e2(b5 - bu):l Cp - 5b5e308 - b5e“c9} (B20b)
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where
N
Ih = l75nRM Cho—— - ;-ehhu cos9v -1 e3hh cos8v - L ee(egh5 + 6hu)cos7v
0 2 9/2| 9 2 7
8a (l - e2)
- % e(eeh5 + hu)cos6v - %<6e2h5 + hﬂ)cos5v - eh5 coshv - % h5 c035v
+hC + ben Cy + (h2 + 6e2hl)c5 + heCu(hg + e2h1>
+ (h5 + 6e2n, + el"hl)c5 + 4e<h3 + e2h2)06
+ e2(6h3 + e2h2)07 + hedngCg + e4h3c9:l (B20c)
N
R
R: = 5onRy Cho - L geedcosTy - L a e2cosby - L e(eZdu + 3d_\cosdv
* > 77207 7? 5 %5 5 5
8a (l - e2)
- i(d5 + Bezdu)coshv - edh cosdv - % du cos2v + dlv + 3edlCl
+ (d2 + 5e2d1)02 + e(3d2 + e2c1l>c3 + <d5 + 5e2dg>clL
+ e(5d5 + e2d2>05 + 3e2d506 + e5d3C7:| (B204)
N
= - 550y Cho - L e5b5 coslv - l'b5e2cos6v -1 e(egbu + 5b5>cos5v
2 oNT/2] T 2 5
8a (l -e )
- -z‘:(b5 + 5e2bu)cosuv - ebh cosdv - %-bu cos?v + blv + 5eblCl
+ (b2 + 5e2bl> Co + e(Bb2 + e2bl)C5 + <b3 + 3e2b2)0)+
+ e(5b3 + e2b2)05 + 5e2b506 + e3b507:, (B20e)
Ry =0 (B20f)
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In equations (B19) to (B20f) the following definitions were used:

h]_ = i - ;{- sin®i + % sinui - COos 2w sinei<2 - ]2; sin21> + % sinhi cos bw

35 T
(B21a)
h, = 2(% - -2- sin2i) cos 2w sin2l - cos b sinti (B21D)
hs = cos b sinti (B2lc)
hy, = -sin Mo sin*i (B214d)
hg = —2(2 - L singi) sin 20 sin®i + L sin ko sinki (B2le)
T2 2
by = -2(% - -é- sin2i> sin 20 sin2i + % sin*i sin o (B22a)
by = b sin?i (% - % sin21> sin 20 - sin 4o sini (B22Db)
bz = L sin*i sin Mo (B22c)
by, = 2[2(% - % sinei)cos 2w - sin?i cos lwa:lsir@i (B224d)
by = b sin™ cos hw (B22e)
d, = sin i cos |- 2+ 2 sini - 2(2 - sini)cos 2 + L sin?i cos ko

7T 2 7 2
(B23a)
dy, = 4 sin i cos 1[(% - sin2i) cos 2 - sin®i cos hw:l (B23Db)
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ds = 4 sindi cos i cos hw
d), =2 sin 1 cos il:singi sin ko - 2(% - sinEi) sin an:I

d5 = -b sin Yo sindi cos i

(B23c)

(B23d)

(B23e)
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Figure 7.- Continued.
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“The aeronautical and space activities of the United States shall be
conducted 5o as to contribute . . . to the expansion of human knowl-
edge of phenomena in the atmosphere and space. The Administration
shall provide for the widest practicable and appropriate dissemination
of information concerning its activities and the resulls thereof.”

—NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered
important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless
of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distri-
bution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Technical information generated in con-
nection with a NASA contract or grant and released under NASA auspices.

TECHNICAL TRANSLATIONS: Information published in a foreign
language considered to merit NASA distribution in English.

TECHNICAL REPRINTS: Information- derived from NASA activities
and initially published in the form of journal articles.

SPECIAL PUBLICATIONS: Information derived from or of value to
NASA activities but not necessarily reporting the results -of individual
NASA-programmed scientific efforts, Publications include conference
proceedings, monographs, data compilations, handbooks, sourcebooks,
and special bibliographies.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546



